20. [4 marks]

From a group of nine people, a sample of six is taken.

(a) How many such samples are possible?

[1]

The sample of six contains four boys.

- (b) In how many ways can all six be arranged for a photo, if:
 - (i) there is no restriction?

[1]

(ii) the boys are together?

[2]

Use proof by contradiction to show that if x is even then x + 2 is also even

End of Section Two

14. [7 marks]

PQ and PR are chords of equal length in a circle, where PS is a diameter.

(a) Draw a well labelled diagram.

[1]

(b) Prove:

(i) QS = RS.

[3]

(ii) PS bisects QR.

[3]

Question 13	(O montes)
Question is	(9 marks)

The points A, B and C have position vectors $\mathbf{a} = 3\mathbf{i} + 4\mathbf{j}$, $\mathbf{b} = 14\mathbf{i} - 3\mathbf{j}$ and $\mathbf{c} = -5\mathbf{i} + 2\mathbf{j}$.

(a) Determine the angle between vectors **b** and **c**, giving your answer rounded to one decimal place. (2 marks)

(b) Find the position vector of point D which divides \overline{AC} internally in the ratio 5:3. (3 marks)

(c) Express the vector **b** in terms of **a** and **c**. (4 marks)

Question 10 (10 marks)

Three points are given by A(1, 2), B(p,-2) and C(12,4).

(a) Determine a unit vector parallel to the line through AC.

(2 marks)

(1 mark)

(b) Write down a vector equation of the line through AC.

(c) Find the value of p if the lines through AB and BC are perpendicular and p < 8. (3 marks)

Question 17 (7 marks)

M is the mid-point of line segment AB.

If \overrightarrow{OA} , \overrightarrow{OB} and \overrightarrow{OM} are \underline{a} , \underline{b} , \underline{m} respectively

(a) Find an expression for \underline{m} in terms of \underline{a} and \underline{b} . (4)

(b) Hence, or otherwise state the coordinates of S if S divides the line segment joining F(1,4) to G(6,9) in the ratio 1:1. (3)

Question 13 (6 marks)

In the diagram $\overrightarrow{PQ} = 2\underline{b}$, $\overrightarrow{PS} = 4\underline{a}$ and $\overrightarrow{SR} = 2\underline{a} + \underline{b}$

- (a) Express as simply as possible, in terms of \underline{a} and/or \underline{b} (2)
 - (i) \overrightarrow{SQ}
 - (ii) \overline{QR}

There is another point, T.

(b) If
$$\overline{PT} = h\overline{PR}$$
, express \overline{PT} in terms of h,\underline{a} and \underline{b}

(c) Given that
$$4\overrightarrow{ST} = \overrightarrow{SQ}$$
, calculate the value of h . (3)

9

Question 9 (10 marks)

(a) Point A has position vector $k\underline{i}-\underline{j}$. Point B has position vector $6\underline{i}-k\underline{j}$.

If
$$|\overrightarrow{AB}| = 5$$
, find the value(s) of k . (4)

(b) Let A= (5,1), B=(0,4), C=(-1,0)

Find

(Hint: Use the grid below to help you find the points)

(i) D such that $\overrightarrow{AB} = \overrightarrow{CD}$

(2)

(ii) F such that $\overrightarrow{AF} = \overrightarrow{-BC}$

(2)

(iii) G such that $\overrightarrow{AB} = \overrightarrow{2GC}$

(2)

Question 7 (10 marks)

(a) If
$$\underline{a} = 6\underline{i} - 4\underline{j}$$
, $\underline{b} = 3\underline{i} + 4\underline{j}$, $\underline{c} = 2\underline{i} + 5\underline{j}$

(i) Determine
$$|\underline{c} - \underline{b}|$$
 Leave your answer as a surd

(ii) Determine
$$2\underline{b} - 3\underline{a} + \underline{c}$$
 (2)

(iii) Determine a vector in the direction of
$$\underline{a}$$
 but with a magnitude of 5. (3)

(b) Find the value of k if \underline{p} and \underline{q} are parallel vectors.

$$\underline{p} = \sqrt{2} \begin{pmatrix} k \\ -3 \end{pmatrix}, \quad \underline{q} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \tag{3}$$

3

Question 15 (4 marks)

In the diagram below ABC is a right-angled triangle, and M is the mid-point of the hypotenuse BC.

Prove that M is equidistant from each of the vertices A, B and C.

Hint: Start by drawing the line through M that is parallel to the side AB.

19. [6	marks
-------	---	-------

- (a) Given 8 students in a class are good debaters,
 - (i) in how many ways can a team of three be chosen from the 8 students? [1]

(ii) in how many ways can a team of three be chosen if one particular student is chosen as captain and another student of the 8 cannot attend the debate? [2]

- (b) Annie has a street stall. She sells T shirts in ten different colours but can only display six T shirts at a time.
 - (i) In how many ways can she display six different colour T-shirts in a line at the back of her stall? [1]

Annie's football team wear yellow and blue.

(ii) In how many ways can Annie display six different coloured T-shirts with a yellow T-shirt next to a blue T-shirt? [2]